Sparse Nonnegative Matrix Factorization for Clustering

نویسندگان

  • Jingu Kim
  • Haesun Park
چکیده

Properties of Nonnegative Matrix Factorization (NMF) as a clustering method are studied by relating its formulation to other methods such as K-means clustering. We show how interpreting the objective function of K-means as that of a lower rank approximation with special constraints allows comparisons between the constraints of NMF and K-means and provides the insight that some constraints can be relaxed from K-means to achieve NMF formulation. By introducing sparsity constraints on the coefficient matrix factor in NMF objective function, we in term can view NMF as a clustering method. We tested sparse NMF as a clustering method, and our experimental results with synthetic and text data shows that sparse NMF does not simply provide an alternative to K-means, but rather gives much better and consistent solutions to the clustering problem. In addition, the consistency of solutions further explains how NMF can be used to determine the unknown number of clusters from data. We also tested with a recently proposed clustering algorithm, Affinity Propagation, and achieved comparable results. A fast alternating nonnegative least squares algorithm was used to obtain NMF and sparse NMF.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

A Review of Nonnegative Matrix Factorization Methods for Clustering

Nonnegative Matrix Factorization (NMF) was first introduced as a low-rank matrix approximation technique, and has enjoyed a wide area of applications. Although NMF does not seem related to the clustering problem at first, it was shown that they are closely linked. In this report, we provide a gentle introduction to clustering and NMF before reviewing the theoretical relationship between them. W...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

Nonnegative matrix factorization for interactive topic modeling and document clustering

Nonnegative matrix factorization (NMF) approximates a nonnegative matrix by the product of two low-rank nonnegative matrices. Since it gives semantically meaningful result that is easily interpretable in clustering applications, NMF has been widely used as a clustering method especially for document data, and as a topic modeling method. We describe several fundamental facts of NMF and introduce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008